
NASA Contractor Report 201647

ICASE Report No. 97-6

A BOOKKEEPING STRATEGY FOR MULTIPLE

OBJECTIVE LINEAR PROGRAMS

Alok Aurovillian

Hong Zhang

Malgorzata M. Wiecek

NASA Contract No. NAS1-19480

Januao, 1997

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

A Bookkeeping Strategy for Multiple Objective Linear Programs

__lok Aurovillian, Hong Zhang*, and Malgorzata M. Wiecek

Department of Mathematical Sciences

Clemson University

Clemson, SC

Abstract

This paper discusses the bookkeeping strategies for solving large multiple objective linear

programs (MOLPs) on ADBASE, a well developed sequential software package, and on a

parallel ADBASE algorithm. Three representative list creation schemes were first analyzed

and tested. The best of them, Binary Search with Insertion Sort (BSIS), was selected to

be incorporated into ADBASE and the parallel ADBASE algorithm. The resulting new

bookkeeping strategy was then tested in ADBASE as well as implemented in the parallel

ADBASE algorithm. The parallel implementations were carried out on an Intel Paragon

multiprocessor. Computational results show that the new bookkeeping strategy for main-

taining a list of efficient solutions significantly speeds up the process of solving MOLPs,

especially on parallel computers.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the second author was in residence at the Institute for Computer Applications
in Science and Engineering, NASA Langley Research Center, Hampton, VA 23681.

1 INTRODUCTION

Multiple objective programming is concerned with theory and methodology that can treat

complex decision making problems encountered in economics, engineering, business, regional

planning, and other areas of human activity. A decision making problem is characterized

by multiple objectives such as distance, time, cost, reliability, safety, and others. As in

general, objectives are noncomparable and conflicting, the solution set of a multiple objective

program usually includes a large or infinite number of points referred to as efficient solutions

or decisions. Mathematical optimization has become the essential tool for generating efficient

solutions and various solution methods have been developed by many researchers in the last

two decades [3] [12].

The multiple objective linear programs (MOLPs) considered in this paper are formulated

as:

where

max{z = Cx I z S},

S = (x >_ 0 I Am1 x <- bml, Am2 x= bin2, Am3x >_ bin3},

C is an k × n matrix, Am2 are mi × n matrices and bm_ are mi × 1 vectors with nonnegative

components, i = 1, 2, 3. A point xo in S is called an efficient solution of the MOLP if there

is no other point x in S such that Cx >_ Cxo, with strict inequality holding for at least one

component.

The structure of the efficient set of MOLPs has several special features. Since this set is

usually a subset of the convex polyhedral set S, it includes efficient extreme points (EEPs)

and unbounded efficient edges. The efficient set is also "connected" in the sense that every

EEP is connected to every other EEP by a series of efficient edges. Assigning EEPs to nodes

and efficient edges to arcs, one can construct a solution graph along which the search for

efficient points can be conducted.

The process of generating and storing EEPs and unbounded efficient edges was studied

by Zeleny [18], Ecker and Kouda [5], Steuer [12], and many others. Theoretical studies

accompanied by implementation efforts resulted in several computer programs for solving

MOLPs. In 1976 Zeleny published a Fortran program for computing all EEPs [19] and in

1980 Fotso developed a program for computing all efficient faces [7]. Isermann and Naujoks

released EFFACET, a Fortran package also for computing all efficient faces [9]. More recently,

Strijbosch et al. presented a simplified MOLP algorithm which is a variant of ADBASE and

is more logically transparent to the non-expert users [15]. Armand and Malivert developed

the package VERTICES for computing all EEPs and all unbounded efficient edges and the

package FACE for computing all efficient faces of an MOLP [1]. ADBASE was developed by

Steuer in the 1970's and its revised versions have been released every few years since then

[14]. The current version of ADBASE is a stable, efficient and well-written Fortran package

for computing all EEPs and all unbounded efficient edges. Among all the available computer

programs for MOLPs, ADBASE is the most widely distributed package and has been used

by many researchers. Thus, it is the only well established package for solving MOLPs. For a

detailed comparison between some well-known algorithms for solving MOLPs, see Strijbosch

et al. [15].

Sincesolving largemultiple objectiveprogramsoften requiresintensivecomputation and
large storage space,severalstudies on generatingefficient solutions by parallel processing
havebeenalsoundertaken. In fact, Evtushenkoet al. wereperhapsfirst to recognizethe need
of solving multiple objective programson parallel computers[6]. In the area of interactive
decisionmaking, Costa and Climaco developed a multiple reference point approach to solving

MOLPs [4]. In the field of engineering, Chang presented a parallel implementation of power

systems optimization with multiple objectives I21. Wiecek and Zhang initiated studies on

finding efficient solutions of MOLPs on parallel computers and developed a parallel ADBASE

algorithm, which will be referred to as Parallel ADBASE in this paper [16] [17].

Following upon the recent developments in sequential and parallel computation for multi-

ple objective programming, this paper discusses bookkeeping strategies specifically designed

for ADBASE and Parallel ADBASE.

ADBASE performs several tasks related to solving MOLPs and analyzing their efficient

sets. The part of ADBASE responsible for generating all EEPs consists of three main phases.

In Phase I, an initial extreme point is found or the process terminates if such a point does

not exist. An initial efficient basis and the corresponding initial EEP (IEEP) are found in

Phase II or the process is terminated if no efficient basis exists. In Phase III, given an IEEP,

all other EEPs and unbounded efficient edges are found in a systematic manner by pivoting

and applying the bookkeeping/master-list/crashing strategy. The nonbasic variables of the

IEEP are checked for feasibility and efficiency, and all the other EEPs directly connected to

the initial one are found. These EEPs are stored in a list, and their corresponding bases,

coded appropriately, are stored in a list called LISTB. After the IEEP has been completely

examined for neighboring EEPs and the EEPs put on the list, the program moves down the

list ("crashes") to the next stored EEP. From this solution, all its neighboring solutions are

again examined for feasibility and efficiency. When an EEP is found, it is checked against

the list to see if it has been put in the list. If it is not already in the list, it is placed in the

list. This process is repeated until all the EEPs have been examined for possible neighboring

EEPs.

Parallel ADBASE significantly accelerated the solution process of MOLPs and demon-

strated the potential feasibility of ADBASE for solving very large MOLPs on advanced

computers [16] [17]. However. it also revealed that the current bookkeeping scheme in AD-

BASE is a severe bottleneck for sequential processing as well as for parallel processing. Note,

ADBASE was initially developed as a sequential software for solving MOLPs of a small to

medium size I131, for which the bookkeeping strategy was not a concern to the efficiency

of the package. However, when solving large MOLPs, especially on parallel computers, the

bookkeeping becomes the crux of the efficiency of the algorithm. Thus, it became necessary

to devise a new bookkeeping scheme to improve ADBASE and Parallel ADBASE for solving

large MOLPs.

The main feature of the current bookkeeping scheme in Parallel ADBASE is to maintain

a global updated list of EEPs on all processors, so that the computation for searching and

examining new EEPs can be distributed evenly among processors. While this global list

reduces the communication overhead for job balance, it introduces redundant computation

and storage. In [17], the pros and cons of replacing the global bookkeeping with local lists

were considered and discussed. Preliminary analysis and investigation have been conducted

since then and no convincing evidence demonstrating a favorable local list scheme has been

2

found. Therefore, the research work reported here focuses on the list creation scheme in

the bookkeeping for both ADBASE and Parallel ADBASE, while the latter still adopts the

global bookkeeping strategy.

This paper is organized as follows. First, three representative list creation schemes are

examined. Then, having decided upon the most suitable scheme for maintaining the list of

efficient bases, this optimal scheme is incorporated into ADBASE and comparisons are made

with the original ADBASE. Finally, the resulting new bookkeeping strategy is implemented

into Parallel ADBASE and the importance of the new strategy is discussed.

2 LIST CREATION SCHEMES

List creation is one of the most common operations performed by a computer. Many list

creation schemes have been well developed and widely used as building blocks in complex

numerical algorithms. Based upon the nature of MOLPs and ADBASE methodology, we

selected three representative list creation schemes for comparison, each with different struc-

tural and algorithmic representations:

1. Unsorted List (UL),

2. Binary Search with Insertion Sort (BSIS),

3. Linked List Sort (LLS).

In these schemes, two important processes were distinguished: the search for the number on

the list and the insertion of the number into the list if it is not already on the list.

The first scheme, referred to as UL, simulates the ADBASE package, where the list of

coded bases, LISTB, is maintained in an unsorted manner. In this scheme, every time a new

number is generated, it is compared to each entry in the list. If the number is not already

on the list, it is then inserted at the bottom of the list. Thus, the whole list needs to be

scanned each time and the insertion occurs at the bottom.

In general, sorted data are easier and faster to manipulate than randomly ordered data.

It was conjectured that maintaining a sorted list of numbers would speed up the process

of determining whether a number was already on the list. This led to choosing two most

representative schemes that maintain a sorted list but differ in the search techniques and

the storage of the numbers. Scheme 2, referred to as BSIS, is a well-known computational

scheme for searching and maintaining a list of numbers as an array, while scheme 3, referred

to as LLS, is known for maintaining a sorted linked list of nodes which contain the numbers

Is].
The computational complexities of the three schemes are given in Table 1. Even though

all the schemes considered have the same overall complexities, it is important to note the

differences in their search and insertion times. A careful observation indicates that BSIS and

LLS outperform the UL scheme in general, and BSIS is the best scheme for very large lists.

This is because (1) for a newly found number, O(n 2) is the actual search complexity for UL,

an upper bound of search complexity for LLS, and an upper bound of insertion complexity

for BSIS attainable only when the new number appears at the very top of the list; (2) for a

redundant number, insertion is not performed; (3) for BSIS, when a list is large, its search

time is negligible compared to its insertion time. The insertion could be time consuming but

its time is at most comparable with and is always bounded by the actual search time taken

by the LLS and UL scheme respectively.

Table 1: Complexity for List Creation Schemes

Algorithm
Search

UL O(n '2

Complexity

BSIS O(n log 2 n)

LLS O(n 2)

Insertion

o(1)
O(n2)
0(1)

Overall

2)
O(n2)
O(n2)

The schemes were tested on large lists of up to 10,000 numbers and the results are

summarized in Figure 1, where each data point represents an average of 10 executions.

The figure confirms that maintaining a sorted list with BSIS and LLS does improve upon

ADBASE's method of maintaining an unsorted list of numbers. As predicted by the analysis,

the UL scheme with an unsorted list of numbers was the slowest while BSIS gave the fastest

times.

3O

25

2O

O
O

_15

Q)

E

10

0
0

Figure 1: Times for Three List Creation Schemes

l i l I t l I I i /_

*-- Unsorted List

o-- Linked List Sort /,_

/

+-. Binary Search with Insertion Sort

,/ /

/

/

/

...0_ _Z7"! _:.._

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of List

These results indicate that BSIS is the most suitable scheme of those examined ms a

bookkeeping strategy for ADBASE, especially when the nature of MOLPs and ADBASE's

technique are considered. The reason is that the solution graph of an MOLP is often cyclic

and ADBASE searches the graph dynamically. While searching for all EEPs, previously

examined EEPs can be encountered again. Thus, the searching of the list of EEPs becomes

most significant while the insertion is less important. BSIS is clearly the fastest search

technique. The computational results of Figure 1 also justify the use of this scheme especially

in the case of large lists of numbers, where it takes approximately one third of the time

taken by the UL scheme which simulates ADBASE's bookkeeping technique. Thus, the

BSIS scheme was chosen to be implemented into ADBASE and Parallel ADBASE.

3 SEQUENTIAL ADBASE

In this section we present the results of implementing the new bookkeeping strategy of the

BSIS scheme into the sequential ADBASE. In ADBASE, an efficient basis and an EEP are

first coded and then stored in a vector with each component representing up to 30 variables.

While implementing the BSIS scheme into ADBASE, it was observed that sorting a list of

vectors took a longer time than sorting a list of scalars. This led to the formation and use

of an index table such that the coded efficient bases and EEPs stored in vector format were

unchanged while their sorted order was recorded in the index table. Thus, whenever a new

basis was generated, it was compared to the other bases in LISTB by applying the BSIS

scheme through the index table. If the basis was not found in LISTB, it was stored at the

bottom of the list and its sorted position was inserted into the index table. The ADBASE

equipped with BSIS through this index table is referred to as ADBASE-BSIS.

Since the primary goal of this work was to improve the bookkeeping strategy, computa-

tional results for the times spent on the bookkeeping were compared between the original

ADBASE and ADBASE-BSIS. Moreover, it was necessary to determine the percentage of

the total time spent on the bookkeeping. As all the bookkeeping in ADBASE occurs in the

subroutine CODE, it was convenient to time each call to this subroutine in order to get the

approximate time spent on the bookkeeping. The total time spent in the subroutine CODE

in comparison to the total time for the whole program is an approximate indicator of the

percent of time spent on the bookkeeping.

Table 2 and Figure 2 give the testing results of ADBASE and ADBASE-BSIS for different

size MOLPs generated by the ADBASE random problem generator [13] [14]. From these

results, the following is observed:

1. For ADBASE, as the size of the problem increases, the percentage of time spent in the

subroutine CODE increases. This result justifies the primary focus of this work: to

find a more efficient method to do the bookkeeping.

2. The results obtained by ADBASE-BSIS give a very significant improvement. As the

size of the problem increases, the percentage of time spent in CODE remains roughly

unchanged and is a small portion of the total computation. For very large problems,

the bookkeeping with the BSIS scheme takes only 2% of the total computational time

while it takes about 14% for the original ADBASE. This is a very good improvement.

The list creation scheme that occurs in the subroutine CODE is the dominating part of the

ADBASE program that cannot be efficiently divided into independent subtasks. Therefore,

the improvement in the bookkeeping by the BSIS scheme becomes even more significant

when MOLPs are solved on multicomputers.

Table 2: Execution Times for Subroutine CODE (secs)

Number of

EEPs

CODE/Total
ADBASE ADBASE-BSIS

126 0.06 / 2.88 0.05 / 2.69

243 0.19 / 4.81 0.14 / 4.52

483 0.63 / 12.38 0.32 / 11.51

1027 2.48 / 34.53 0.99 / 31.55

1561 5.54 / 59.11 1.72 / 52.23

2029 8.89 / 81.58 2.08 / 69.38

3133 21.62 / 220.00 4.45 / 189.22

4142 36.48 / 460.32 7.11 / 404.67

5035 54.74 / 586.66 9.68 / 509.47

6752 94.35 / 895.96 14.47 / 769.74

7222 108.98 / 921.42 17.37 / 783.32

9549 185.84 / 1309.98 23.86 / 1079.35

Figure 2: Percent of Total Time Spent in CODE

15

*-- ADBASE

o-- ADBASE-BSIS

0 I I I I I I I I I

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of EEPs

4 PARALLEL ADBASE

The new list creation scheme was incorporated into Parallel ADBASE which had been de-

veloped and implemented by Wiecek and Zhang [17]. The computer program for the original

Parallel ADBASE and the one for Parallel ADBASE with the BSIS list creation scheme will

be referred to as PADBASE and PADBASE-BSIS, respectively.

In developing a parallel algorithm, one tries to achieve the shortest execution time by

dividing the problem into several sub-tasks to be executed concurrently on multicomputers

[10] [11]. The computational time of any program can be split into a global time Tg, that

cannot be distributed among processors, and a local time Tz, that can be executed simul-

taneously on all processors. Thus, the total execution time using p processors, T,, can be

represented as:

Tp=T_+ Tl
P

For a fixed problem, the ratio
G
Tp G +

increases quickly as the number of processors p increases, indicating that the global time

which was negligible during a sequential execution could become a dominating factor for

a multicomputer as each processor redundantly repeats the same task. Therefore, the im-

provement in the bookkeeping, which reduces the global time, becomes more significant for

Parallel ADBASE.

In order to compare the parallel performance of PADBASE and PADBASE-BSIS, the

percentage savings of the new bookkeeping scheme over the previous method is used, which

is defined as:

Percent Savings = Tp for PADBASE - Tp for PADBASE-BSIS
rp for PADBASE (1)

Since PADBASE and PADBASE-BSIS differ only by their bookkeeping strategies which take

place in global computations, the percent savings (1) can be also expressed as

Percent Savings = 1 - T° for PADBASE-BSIS + T_/p
To for PADBASE + T_/p (2)

In principle, a large number of processors are used for solving large size problems. When

MOLPs are well scaled with the number of processors used, i.e., Tt/p remains to be a constant

as the size of MOLPs and number of processors increase simultaneously, (2) implies that the

percent savings of PADBASE-BSIS over PADBASE is proportional to the deviation of T0's

for PADBASE-BSIS and PADBASE respectively. Since T9 is approximately equal to the

time spent in CODE, the percent savings is expected to gradually increase when the size of

MOLPs becomes larger, as indicated by Figure 2.

Using the data obtained from the sequential implementation of ADBASE, one can predict

the parallel performance of PADBASE and PADBASE-BSIS, and further quantify the above

discussion. For example, assume PADBASE takes Tp = 100 unit time to solve a given MOLP

on p = 1 processor. Assume the global bookkeeping takes T9 = 10 unit time for PADBASE

and T9 = 2 unit time for PADBASE-BSIS, times that approximate the average times spent

in the subroutine CODE as seen in Figure 2. When this hypothetical MOLP is solved

on a multicomputer with p processors, one can predict the parallel execution times (in unit

time), percent savings of PADBASE-BSIS over PADBASE, and ratios representing predicted

percent spent on bookkeeping. Table 3 lists the predicted values for this example.

Table 3: Predicted Parallel Performance
Execution Time Tp (unit time)

P PADBASE PADBASE

-BSIS

Percent Savings

(%)
TJTp (%)

PADBASE PADBASE

-BSIS

1 100.00 92.00 8.0 10.00 2.17

2 55.00 47.00 14.5 18.18 4.26

4 32.50 24.50 24.6 30.77 8.16

;8 21.25 13.25 37.7 47.06 15.09

The last two columns in Table 3, corresponding to the percentage of time spent on

bookkeeping in PADBASE and PADBASE-BSIS respectively, indicate that the bookkeep-

ing, which was a relatively small global operation, 10.00 % for PADBASE and 2.17 % for

PADBASE-BSIS when the programs were sequentially executed, could dominate the com-

putational time as the number of processors increases. Comparing these two columns, we

anticipate that the new list creation scheme will significantly reduce the percent of total time

spent on the bookkeeping. This observation further justifies the need to reduce the global

time by using the new list creation scheme, especially in the case when MOLPs are solved

on advanced parallel computers.

Parallel ADBASE was run on an Intel Paragon XPS/4, an MIMD computer, located at

the South Carolina Supercomputing Network Facilities and Services. All the runs were done

on a fixed compute partition of eight nodes. Care was taken to ensure that runs with the

same number of processors were always done on the same node partition. This precaution

helped eliminate the possible instabilities of the Paragon in choosing the nodes on which the

programs were executed.

The objective of the numerical testing is to compare the bookkeeping schemes in PAD-

BASE and PADBASE-BSIS. These two programs were tested on the same test problems

used on the sequential ADBASE. Table 4 gives the execution times of the two programs and

percent savings of PADBASE-BSIS over PADBASE, while Figure 3 gives the percent savings

for the different problems on the different numbers of processors. In all instances, the new

bookkeeping scheme improves upon the previous one. For each of the MOLPs considered,

the percent savings increases as more processors are used. It is very interesting to observe the

asymptotic behavior of the percent savings revealed by Figure 3. Once the size of problems

is large enough, the percent savings on different number of processors slowly increase and

become quite closer to the predicted values given by Table 3.

The performance on eight processors is poor for both PADBASE and PADBASE-BSIS.

This is largely due to the nature of MOLPs whose inherent cyclic solution graphs prevent

us from adopting local bookkeeping strategies that have been effectively used in tree search

strategies for solving single objective linear programs [11]. Previous research has revealed

that as the number of processors doubles, in order to maintain the efficiency of PADBASE,

the size of an MOLP, measured by its number of EEPs, needs to be increased at least by a

factor of 10, indicating the current PADBASE is not suited to large number of processors for

the purpose of finding all EEPs of the MOLP [17]. This explains why the execution times

increase on PADBASE and PADBASE-BSIS in going from four to eight processors for the

Table 4: Parallel Performance

Number I Execution Time (secs)
of EEPs [p PADBASE PADBASE-BSIS

126 1 2.0 1.9
2 1.8 1.1
4 3.3 0.7
8 7.9 0.8

24:3 1 3.4 3.4
2 2.8 1.9
4 7.6 1.2
8 14.1 1.2

483 1 8.8 8.7
2 5.3 4.6
4 5.4 2.7
8 15.3 2.7

1027 1 24.8 24.1
2 13.8 12.5
4 13.6 6.7
8 24.0 6.8

1561 1 42.0 40.2
2 22.1 20.4
4 16.8 11.1
8 22.4 11.2

2029 1 56.9 53.7
2 30.2 27.5
4 18.9 14.4
8 25.1 13.9

3133 1 153.4 145.5
2 80.9 74.2
4 48.1 39.0
8 58.5 38.3

4142 1 321.7 307.1
2 167.6 155.0
4 88.6 79.0
8 109.5 78.4

5035 1 405.5 383.9
2 205.5 190.6
4 111.0 97.2
8 124.5 97.5

6752 1 626.3 086.8
2 321.0 291.2
4 193.9 152.5
8 184.9 124.3

7222 1 636.0 591.2
2 323.2 293.1
4 188.6 153.1
8 182.1 135.4

9549 1 890.9 810.3
2 456.5 403.5
4 276.1 212.8
8 237.1 173.2

Percent Savings

(1.5
37.1
78.0
90.4
0.9
32.6
84.6
91.6
1.8

11.6
50.4
82.3
2.9
9.1

50.4
71.5
4.1
7.9

34.1
49.9
5.6
9.2
23.7
44.7
5.1
8.3
18.9
34.5
4.5
7.5

10.8
28.4
5.3
7.3
12.4
21.7
6.3
9.3

21.4
32.8
7.0
9.3
18.8
25.6
9.0
11.6
22.9
27.0

100

Figure 3: Percent Savings of PADBASE-BSIS over PADBASE

70

v

60

¢-

'_ 50
co
¢-

13.

i i i i i i

90 _ Number of Processors

80 -. =

x.. p=2

l _ o-- p=l

40 +- -_\\ \ __,,,_

3o \,
. "_

20t10 x _ '_ " '" "+.--.---'+_ _ _ _ _ "'+'-- -" 'X,. X X- .. X

Oic_ e _a -_a-°I I I I

0 1000 2000 3000 7000

_ -4-

...... x x .,. ,.:_ - -o- -o- - -•0-- -- --().

.......... X

x - - E)

I I I I I

4000 5000 8000 8000 9000
Number of EEPs

10000

relatively small MOLPs tested. However, the data collected in Table 4 clearly show that

on eight processors both PADBASE and PADBASE-BSIS start accelerating the solution

process as the size of MOLPs increases.

Overall, the new bookkeeping scheme gives savings for all the different sized MOLPs

solved on the different number of processors. The new algorithm performs significantly better

when the number of processors is increased. These results further confirm the significance

of improving the bookkeeping task, a global operation, especially in the case when MOLPs

of large size are solved on multicomputers.

5 CONCLUSIONS

The need for a new bookkeeping strategy for ADBASE and Parallel ADBASE was the

main motivation for this research. This led to a study of three representative list creation

schemes. The computational complexity study, the numerical results and the nature of

MOLPs revealed that the Binary Search with Insertion Sort (BSIS) is the most suitable list

creation scheme for incorporation into the bookkeeping of ADBASE. The BSIS scheme was

implemented in ADBASE as well as in Parallel ADBASE. The scheme considerably reduced

the time spent on the bookkeeping, a global operation for Parallel ADBASE. The analytic

study and experimental results reported in this work suggest that the resulting bookkeeping

strategy significantly improves upon the previous one, and has potential for being even more

effective for solving very large MOLPs on multicomputers.

10

Acknowledgment. We would like to thank Thomas W. Crockett of the Institute for

Computer Applications in Science and Engineering at NASA Langley Research Center for

his help in our implementation of the parallel programs.

References

[1] P. ARMAND AND C. MALIVERT, Determination of the efficient set in muItiobjective lin-

ear programming, Journal of Optimization Theory and Applications, 70 (1991), pp. 467-

490.

[2] C. S. CHANG, Co-ordinated static and dynamic monitoring and optimization of power

systems using a parallel architecture and pattern recognition techniques, IEE Proceedings

- C, 139 (1992), pp. 197-204.

[3] V. CHANKONG AND Y. Y. HAIMES, Multiobjective Decision Making - Theory and

Methodology, North-Holland, New York, 1983.

[4] J. P. COSTA AND J. N. CLIMACO, A multiple reference point parallel approach in

MCDM, Proceedings of the Tenth International Conference on Multiple Criteria Decision

Making, Taipei, 3 (1992), pp. 265-272.

[5] J. G. ECKER AND I. A. KOUDA, Finding all efficient extreme points for linear multiple

objective programs, Mathematical Programming, 14 (1978), pp. 249-261.

[6] Y. EVTUSHENKO, V. MAZOURIK, AND V. RATKIN, Multicriteria optimization in the

DISO system, Optimization, Parallel Processing and Application, eds: A. Kurzhanski,

K. Neumann and D. Pallaschke, Springer-Verlag, Berlin, (1988), pp. 94-102.

[7] L. FOTSO, Multiple objective programming, Ph.D. Dissertation, Operations Research

and Statistics Interdisciplinary Program, Rensselaer Polytechnic Institute, Troy, New

York, (1981).

[8] E. HOROWITZ, S. SAHNI, AND S. ANDERSON-FREED, Fundamentals of Data Struc-

tures in C, W. H. Freeman and Company, New York, NY, 1993.

[9] H. ISERMANN AND (]. NAUJOKS, Operating manual for the EFFACET multiple objec-

tive linear programming package, Fakultaet fuer Wirtschaftswissenschaften, University

of Bielefeld, Bielefeld, Germany, (1984).

[10] L. KRONSJO AND D. SHUMSHERUDDIN, eds., Advances in Parallel Algorithms, John

Wiley & Sons, New York, 1992.

[11] V. KUMAR, A. GRAMA, A. GUPTA, AND G. KARYPIS, Introduction to Parallel Com-

puting: Design and Analysis of Algorithms, The Benjamin/Cummings Publishing Com-

pan), Inc., Redwood City, CA, 1994.

[12] R. E. STEUER, Multiple Criteria Optimization: Theory, Computation, and Application,

John Wiley and Sons, New York, 1986.

11

[13]m

[14]

[15]

[16]

[17]

[18]

[19]

, Random problem generation and the computation of efficient extreme points in

multiple objective linear programming, Computational Optimization and Applications,

3 (1994), pp. 333-347.

--, Manual for the ADBASE Multiple Objective Linear Programming Package, De-

partment of Science and Information Technology, University of Georgia, Athens, Geor-

gia, 1995.

L. W. G. STR.IJBOSCH, A. G. M. VAN DOORNE, AND W. 3. SELEN, A simplified

MOLP algorithm: the MOLP-S procedure, Computers and Operations Research, 18

(1991), pp. 709-716.

M. M. WIECEK AND H. ZHANG, Solving multiple objective linear programs on the Intel

Paragon, Proceedings of Mardi Gras '94 Conference: Toward Teraflop Computing and

New Grand Challenge Applications, Baton Rouge, Louisiana, February 10-12, (1994),

pp. 323-329.

--, A parallel algorithm for multiple objective linear programs, to appear in Compu-

tational Optimization and Applications, (1997).

M. ZELENY_ Lecture Notes in Economics and Mathematical Systems: Linear Multiob-

jective Programming, Springer-Verlag, New York, 1974.

--, Multicriteria simplex method: a Fortran routine, Lecture Notes in Economics and

Mathematical Systems, 123, Springer-Verlag, Berlin, (1976), pp. 323-345.

12

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188

Public reporting burden for this collection of information is estimate_:i to average 1 hour per.responses,including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 222(]2-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 1997 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A bookkeeping strategy for multiple objective linear programs

6. AUTHOR(S)

Alok Aurovillian

Hong Zhang

Malfforzata M. Wieeek

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-0001

g. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 97-6

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-201647

ICASE Report No. 97-6

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report
Submitted to the Journal of Computers and Operations Research.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

12b. DISTRIBUTION CODE

Subject Category 64

13. ABSTRACT (Maximum 200 words)

This paper discusses the bookkeeping strategies for solving large multiple objective linear programs (MOLPs) on
ADBASE, a well developed sequential software package, and on a parallel ADBASE algorithm. Three representative

list creation schemes were first analyzed and tested. The best of them, Bina_/Search with Insertion Sort (BSIS),

was selected to be incorporated into ADBASE and the parallel ADBASE algorithm. The resulting new bookkeeping

strategy was then tested in ADBASE as well as implemented in the parallel ADBASE algorithm. The parallel
implementations were carried out on an Intel Paragon multiprocessor. Computational results show that the new

bookkeeping strate_" for maintaining a list of efficient solutions significantly speeds up the process of solving MOLPs,
especially on parallel computers.

14. SUBJECT TERMS

multiple objective linear program: ADBASE; sorting/searching algorithm

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

'NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION lg. SECURITY CLASSIFICATION

OF THIS PAGE OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

14

16. PRICE CODE

20. LIMITATION

OF ABSTRACT

I

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std Z39-18

298-] 02

